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A general numerical method for the solution of complete Reynolds-averaged Navier-Stokes 
equations for three-dimensional flows is described. The method uses nonorthogonal body- 
fitted coordinates, generated either analytically or numerically, while retaining the velocity 
components in a triply-orthogonal curvilinear coordinate system. The convective transport 
equations for mean velocities and turbulence parameters (k, E) are solved by the finite-analytic 
method in the transformed domain. The pressure field is updated using a modified version of 
the SIMPLER algorithm to satisfy the equation of continuity. The capability of the method 
and its overall performance are demonstrated by calculations of the flow over a typical ship 
hull. fi 1990 Academic Press. Inc 

Numerical solutions of the complete Navier-Stokes equations for laminar flow 
and the corresponding Reynolds-averaged equations for turbulent flow have 
received a great deal of attention in recent years since, in principle, they describe 
flows with any level of complexity, the only uncertainty being that introduced by 
the turbulence model employed to effect closure of the Reynolds equations. Indeed, 
solutions using a variety of numerical schemes are becoming quite common for 
flows involving two-dimensional and axisymmetric geometries or some other 
simplifying features. As available computing power increases, many problems of 
practical interest, which invariably involve complex three-dimensional geometries, 
are becoming tractable through solutions of the complete equations. The rapid 
progress being made in numerical generation of computational grids for arbitrary 
bodies greatly facilitate such applications. 

Computational fluid dynamics (CFD) is beginning to play a major role in 
analysis and design for applications in aerodynamics, turbomachinery, ship 
hydrodynamics, and many other branches of fluid mechanics. A number of review 
articles presented at the AIAA 8th CFD conference [l] provide an overview of 
CFD applications in aircraft and automobile industries. Applications in turbo- 
machinery were also reviewed in the above references as well as in McNally and 
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Sockol [Z], while recent advances in some applications in ship hydrodynamics have 
been summarized by Pate1 [3]. The numerical methods used in these applications 
are appropriate for equations ranging from the Euler equations for inviscid flows to 
the complete Reynolds-averaged Navier-Stokes equations for turbulent compressible 
flows. An assessment of these and other related finite-difference methods has been 
made in Refs. [4-61. 

It is of interest to note here that considerable confusion abounds in the terminol- 
ogy used in the literature, particularly with regard to the term “Navier-Stokes.” In 
addition to the complete Reynolds-averaged equations for turbulent flow, it is often 
associated, rather loosely and incorrectly, with equations in which further 
approximations are made. In the numerical solutions for general three-dimensional 
viscous flows, we can distinguish at least three levels of approximations between the 
classical boundary-layer equations and the complete Navier-Stokes equations. A 
set of second-order boundary-layer equations can be deduced by formally retaining 
the second-order terms in the familiar order-of-magnitude analysis (Nash and 
Pate1 [7]). A greater degree of generality is embodied in the somewhat inap- 
propriately named “thin-layer” or “thin-layer Navier-Stokes” equations, in which 
all viscous and turbulent transport terms other than those in the direction normal 
to the surface are neglected. The next level of generality, beyond which lies the 
complete equations, is achieved by the so-called partially-parabolic (or 
“parabolized Navier-Stokes,” or “semi-elliptic Navier-Stokes”) equations, in which 
only the longitudinal transport due to viscosity and turbulence is neglected. Here, 
we are concerned with solution of the complete equations without approximations 
of the above kind. 

Despite the great strides made in CFD, numerical solutions of the complete 
Reynolds-averaged equations for general three-dimensional flows are still quite 
limited. Methods which appear to have this capability are those of Refs. [8&14] for 
compressible flows, and Refs. [14-163 for incompressible flows. Here, we focus our 
attention only on methods which deal with incompressible flows. 

The assumption of incompressibility is appropriate for applications in 
hydrodynamics, meteorology, automobile aerodynamics, building aerodynamics, 
and other flows at low Mach numbers. As the speed of sound approaches infinity 
and the pressure in the equation of state is only weakly coupled with the continuity 
and momentum equations in the incompressible limit, the implementation of com- 
pressible-flow Navier-Stokes codes for simulating incompressible flows becomes 
inefficient and inaccurate. Consequently, methods capable of handling the direct 
coupling between velocity and pressure must be sought to ensure a divergence-free 
velocity field. Two different approaches, namely the pressure-correction and the 
artificial-compressibility methods, have been used to handle this coupling for 
general three-dimensional flows. In the pressure-correction methods, such as those 
proposed by Patankar and Spalding [ 171, Patankar [ 181, and Issa [ 193, the equa- 
tion of continuity is enforced at every time step through the solution of a Poisson 
equation for pressure-correction or pressure itself. The artificial compressibility 
methods, proposed initially by Chorin [20], on the other hand, add a pseudo- 
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compressibility term in the equation of continuity and retain the numerical 
methodology used for compressible flows. The introduction of this nonphysical 
pseudocompressibility, however, precludes the use of these methods for the simula- 
tion of unsteady incompressible flows. A time-accurate algorithm based on artificial 
compressibility has been proposed recently by Merkle and Athavale [21], but 
current applications are limited to the two-dimensional Euler equations. 

For three-dimensional flows involving complex geometries, it is desirable to 
employ body-fitted coordinate systems so that the flow in the wall layer can be 
accurately resolved with a reasonable number of grid points. Once such a coor- 
dinate system is selected for a given geometry, there remains the task of formulating 
the equations of motion in that system. Two different approaches can be adopted 
for this purpose. One of these uses that may be termed “partial transformations,” 
in which only the independent coordinate variables are transformed, leaves the 
dependent variables (i.e., velocity components) in a preselected orthogonal coor- 
dinate system. This approach, which has been used by Chen and Pate1 [22-241, 
Rhie [14], and Han [16], among others, has the advantages that the resulting 
equations have a strong conservation form and facilitate the use of pressure-velocity 
coupling algorithms based on conservation of mass. Also, the equations are 
relatively simple, and the results can be readily interpreted. Since the velocity vec- 
tors, in general, do not align with the coordinate directions, this approach may lead 
to increased numerical diffusion when the angles between the velocity components 
and coordinate surfaces become large. The alternative is to transform the equations 
completely, including the independent as well as the dependent variables. This 
approach has been used by, among others, Richmond et al. [25], Stern et al. [26], 
Demirdzic et al. [27], and Ogawa and Ishiguro [28]. The use of contravariant 
velocity components in such a complete transformation allows a much more 
accurate resolution of the flow near a solid surface. However, the fully-transformed 
equations involve many more geometric coefficients and their higher-order 
derivatives. This not only leads to increased computer storage requirements but 
also can adversely affect the flow solution if the coefficients are not smooth and 
accurate. In many practical applications, it is not necessary to use the complete 
transformations if the basic coordinate systems are chosen carefully so as to avoid 
large skew angles between velocity components and the faces of the computational 
cell. 

This paper is concerned with the development of a numerical method for the 
solution of Reynolds-averaged Navier-Stokes equations based on a partial transfor- 
mation of the governing equations. For complete generality, the equations are 
written in the triply-orthogonal curvilinear coordinate system and transformed 
into a general nonorthogonal system. Closure of the Reynolds equations is effected 
by the two-equation k-s turbulence model. The transport equations of momentum 
and the two turbulence parameters are discretized using the finite-analytic scheme 
of Chen and Chen [29931]. Pressure-velocity coupling is established via the 
continuity equation by a modified version of the SIMPLER algorithm of 
Patankar [lS]. To demonstrate the capabilities of the method, calculations are 
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presented for the flow over a ship model. This requires resolution of the thin 
boundary layer over the middle part of the hull, its rapid thickening over the stern, 
and the evolution of the wake from such a complex turbulent shear flow. 

EQUATIONS AND COORDINATES 

(a) Physical Plane 

We consider the equations of motion, in general triply-orthogonal curvilinear 
coordinates (xl, x2, x3, t) for unsteady, three-dimensional, incompressible flow. The 
exact Reynolds-averaged equations of continuity and momentum [7, 251, in dimen- 
sionless form, are 

~{~Ch,h,Y(~)l+~Ih,h,Y(2)l+~Ih,h2V(Z)l}=O (1) 
1 2 3 

V(m) dV(i) 
+ [K. V(i)-K .V(m)] V(~Z+~~~(~)~(~) h,F rm ml h, axm 

+ (2Kim + $jm + Kkm -K,,)u(i)o(m)-Km,u(m)u(m) 

where 

= -----+(K,,,+K,,,+K,,-2K,,,)~~ 1 
Pa) 

m 
and 

1 ahi 

are the curvature parameters and hi are the coordinate metrics. aii are functions 
only of the curvature parameters and their derivatives, 

aii= -(K;+f$‘,+ K;+ K:,) 

(4) 
1 dK, 1 aKJi 

a,=kax,-,dx'-K,,(Kki+Kj;)+K,iK, 
I I 

1 aK, 1 aKk, 
‘ik’c,,,i-G axk ~ - Kjk( Kki + Kji) + Kji K, t 
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where i,j, k are in cyclic order, x’ are the dimensionless coordinates normalized by 
a characteristic length L, and t is the time normalized by L/U,. V(i) = (U, V, W) 
are the components of mean velocity normalized by the characteristic velocity U,, 
p is the pressure normalized by pUi, Re = U,, L/v is the Reynolds number defined 
in terms of U,, L, and molecular kinematic viscosity v. The barred quantities 
o(i) u(m), etc., are the turbulent Reynolds stresses, normalized by Ui. 

The two-equation k-s turbulence model is used to model the Reynolds stresses. 
Each stress is related to the corresponding mean rate of strain by an isotropic eddy 
viscosity v, as 

- o(m) u(n) = 2v,e(mn) - fd,,k, (5) 

where e(mn) are the physical components of the mean rate-of-strain tensor defined 
by 

(f-5) 

and 6,, is the Kronecker delta. The eddy viscosity is related to the dimensionless 
turbulent kinetic energy k, and its rate of dissipation E, by 

where C, is a constant, and k and E are governed by the transport equations 

---;&(&$)}-G+E=o (8) 

G is the turbulence generation term defined by 

G=2v, 2 i e(mn) e(m). 
m=l n=l 

(10) 

The effective “Reynolds number,” R,, for each of the five transport quantities 4 is 
defined as 

where 4 = (U, V, W, k, a) with U= V( 1 ), V= V(2), and W= V(3). The values of the 
constants in these equations are C, = 0.09, C,, = 1.44, C,, = 1.92, oU = oy = gW = 
ok = 1.0, and (T, = 1.3. 
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Using Eqs. (5), (7), and (1 l), Eqs. (2), (8), and (9) can be written 

av(i) 3 
dt+x 

---- - - - K,,, V(i) - K,; V(m) 
m=l I 

-;~K,,V(m)+CK,,V(i)-K,,V(m)] V(m) +kaxi p+?k 
I 1 ‘,“( ‘1 

It is convenient to rewrite these in the compact form, 

V*qb=R@ 

with 

(‘5) 

(16) 

and 

for Pi,, 8L a’, 
otherwise, (‘7) 

where I$ again represents any one of the convective transport quantities: 
(U, V, W, k, E). The source functions sg for U= V(l), V= V(2), W= V(3), k, and F 
are, respectively, 

.q,=$-$,(p+fkj+j, {~$[~~+K,,J’(i)+Km,V(m)] 

2Km a V(m 1 
2;.m 2 Kim J’(m) + R,CL V(i) -Km; V(m)1 V(m) +h,,, ygy 

I 

2Km a V(m) ----a,V(m) axi (d= u, v, W) (18a) 
hi 

sk= -Rk(G-E) (‘8b) 

sE= -Re;(C,:,G-C,Z~). (18~) 
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Equations (12) through (14) are five coupled, nonlinear, partial differential equa- 
tions and, together with the continuity equation (1 ), are sufficient, in principle, to 
solve for the six unknowns p, U, V, W, k, and E when proper initial and boundary 
conditions are specified. 

(b) Transformed Plane 

For the flow around three-dimensional bodies, orthogonal coordinates are not 
the most convenient or efficient for numerical solutions. It is, therefore, desirable to 
introduce analytic or numerical coordinate transformations which simplify the com- 
putational domain in the transformed plane and facilitate applications of the 
boundary conditions. Here, we adopt a body-fitted coordinate system since it offers 
the advantages of generality and flexibility and, most importantly, transforms the 
computational domain into a simple rectangular region with equal grid spacing. 

The basic idea is to find a transformation such that the boundary surface of the 
physical domain in the orthogonal coordinate system (x’, x2, x3, t) are transformed 
into boundaries of a simple rectangular domain in the computational space 
(t’, {‘, t3, T) = (5, q, <, t), as shown in Fig. 1. Once the body-fitted coordinate 
system is generated, either analytically or numerically, the corresponding transfor- 
mation rules can be readily obtained from the specific transformations 
t = t, x’ = x’(r, 11, [, t). In particular, the usual vector operations for dependent 
variables can be expressed in terms of (t, u], [, r) as 

(19) 

(20) 

(21) 

with V,(n) =h,,(~Yx~/&), where V,(n) are the grid velocities of the moving coor- 
dinate system, and the geometric coefficients h,!, g”, and ,f’ are defined by 

(22) 

glJ= i blbi _ ’ 
P P - F (gm,g,k - gntkgn,) (23) 

n=I 
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PHYSICAL DOMAIN TRANSFORMED DOMAIN 

FIG. 1. Coordinate transformation between physical and numerical planes. 

with both (i, j, k) and (1, m, n) in cyclic order. The metric tensor gV and Jacobian 
J are, respectively, 

Wa) 

J2 =det(gi,i) =gllg2,g,, + 2gI,g13g2, -g,,(g23)2-g2z(g13)2 -g33(g12)2. (25b) 

Using the above relations, Eq. (15) can be rearranged into a general convective 
transport equation of the form 

(26) 

where 

and & are as defined in Eq. (17). Hereafter, the subscripts (5, q, [, o) on 
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4 ( = U, V, W, k, E) and v, denote derivatives. The source functions si can also be 
expressed in terms of (<, q, [, t) = ([‘, t2, t3, z) in the transformed plane as 

-a, V(m) (4 = u, K w 

Sk= -Rk(G-E) 

se= -R+,,G-c,~E), 

where the turbulence generation G is given by Eq. (10) with 

fb+ avw+lb, aV(m) 
- + ~m,(Km, + K,) V(f) a<' J n a<[ 1 

-L,V(m)-LV(n) I (29) 

The curvature parameters K,i, the geometric coefficients clij, bj, and g”, and the 
Jacobian J which appear in the above equations are functions of the coordinates 
only. When either analytic or numerical transformations are employed to generate 
the grid distribution, their values can be readily evaluated in the transformed plane. 

It should be recalled that V(i) = (0: V, W) are the velocity components in the 
direction of the orthogonal curvilinear coordinates (xi, x2, x3, t). Equations (26) 
together with the equation of continuity (1) which transforms to 

;mc* ,,j, $i Cb::V(n)l =o (30) 

are the Reynolds-averaged Navier-Stokes equations for unsteady, three-dimen- 
sional, turbulent flows. 

NUMERICAL SOLUTION PROCEDURES 

(a) Finite-Analytic Discretization for the Transport Equations 

In order to correctly handle the elliptic nature of the flow, the finite-analytic 
method of Chen and Chen [29-311 is revised and extended to solve the live trans- 
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port equations for mean velocities (U, V, W) and turbulence quantities (k, E) for 
three-dimensional flows. The most general version of this method would involve an 
analytic solution of the linearized transport equations in a three-dimensional 
element and would result in a 2%point discretization formula. While such a scheme 
may be required for the solution of highly three-dimensional flows in which there 
is no preferred or predominant flow direction, for applications to many 
aerodynamic and hydrodynamic problems it suffices to use a simplified method to 
reduce computer time and storage. Here, we adopt a hybrid method which com- 
bines a two-dimensional local analytic solution in the vi-plane with a one-dimen- 
sional local analytic solution in the <-direction which is aligned roughly with the 
primary flow direction. Details of this numerical scheme are described in the 
following. 

In the finite-analytic approach, Eqs. (26) are locally linearized in each rectangular 
numerical element, At = dv] = A[ = 1, by evaluating the coefficients of the convec- 
tive terms at the interior node P of each local element (Fig. 2) i.e., 

Introduction of the coordinate-stretching functions 

(32) 

[ NC NE 

FIG. 2. Local numerical element 
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in Eq. (31) reduces it to the standard three-dimensional convective-transport 
equation described in Chen and Chen [29, 313, i.e., 

de*<* + q$*‘I* + d;*y = 2Cq5, + 2Bq& + 2A& + Rcj, + (S,),, (33) 

where 

A = (a:),ifi. R = UC& 

for a numerical element with dimensions 

45*=1=(G)-‘, Aq*=k=(E)-‘, A[* = h = (,@-I. (34) 

For the type of applications considered here, it is convenient to decompose 
Eq. (33) into a one-dimensional and a two-dimensional partial differential equation, 

2cqs,* - (ht.<* + R,d, + S, = G(t*, ul*, i*> 7) (35) 

d’l’q* + dc*c* - 2Bq+ -2A& = G((*, q*, [*, z), (36) 

where, as noted above, 4 is the predominant flow direction. If we require the source 
functions G and S, to be constant in each local element and the time derivatives 
to be approximated by a backward-difference formula, Eqs. (35) and (36) reduce to 
the standard one- and two-dimensional convective-transport equations described in 
Chen and Chen [29], respectively. The analytic solution of the one-dimensional 
equation (35) can be readily obtained as: 

q$ = a(e2cc* -l)+b<*+c. (37) 

By substituting the exponential-linear solution (37) into Eq. (35), the source 
function G(0, 0, 0, 0) =g becomes 

where the subscripts U and D denote the upstream and downstream nodal values 
(Fig. 2), respectively, superscript (n - 1) denotes the value at the previous time step, 
and AT is the time step. 

By specifying a combination of exponential and linear boundary functions, which 
are derived from the natural solutions of the governing equations, on all four 
boundaries, q* = + k and [* = +A, of the transverse section of each local element - 
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(c-plane), the two-dimensional equation (36) can be solved analytically by the 
method of separation of variables or any other analytic technique. Details of the 
solution procedure are described in Chen and Chen [29, 301. When the local 
analytic solution thus derived is evaluated at the central node P of the element, the 
following nine-point finite-analytic algebraic equation is obtained, 

where the finite-analytic coefficients C,,, CNC, etc. are given in Chen and 
Pate1 [23]. 

By substituting the nonhomogeneous term g from Eq. (38) into Eq. (39), a 
1Zpoint finite-analytic formula for unsteady, three-dimensional, elliptic equations 
can be obtained in the form 

(40) 

where the subscript nb denotes neighboring nodes (NE : northeast, NW : northwest, 
etc.). It is seen that 4p depends upon all the eight neighboring nodal values in the 
transverse plane as well as the values at the upstream and downstream nodes 4, 
and do, and the values at the previous time step b”,- ‘. When the cell Reynolds 
number 2C becomes large, C, -+ 2Cjl and CD -+ 0, and Eq. (40) reduces to the 
partially-parabolic formulation of Chen and Pate1 [23] which used CL,= 2C/I 
and C, = 0. 

Since Eqs. (40) are implicit, both in space and time, at the current station of 
calculation, their assembly for all elements results in a set of simultaneous algebraic 
equations. These equations are solved by Jacobi line iterations with the tridiagonal- 
matrix algorithm. For steady-state calculations where a time-accurate solution is 
not needed, it is possible to use a large time step and relax the convergence 
criterion for intermediate solutions with only a few internal iterations at each time 
step. Furthermore, the finite-analytic coefficients appearing in Eqs. (40) are not 
updated during these internal iterations for economy of computation time. 

(b) Solution of the Continuity Equation: Velocity-Pressure Coupling 

If the pressure is known, Eqs. (40) can be employed to solve Eqs. (26) for 
U, V, W, k, and E. However, the pressure is not known a priori and must be deter- 
mined by requiring the velocity field to satisfy the equation of continuity (30). Since 
a direct method for the simultaneous solution of all six equations is not feasible 
with present computer capacity, it is necessary to convert the equation of continuity 
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FIG. 3. Locations of the nodes for U, V, W, and p in the staggered grid. 

into an algorithm for the calculation of the pressure field. The SIMPLER algorithm 
of Patankar [18] has been modified and extended for this purpose. A staggered- 
grid system is adopted. Figure 3 shows the locations of the nodes for U, V, W, and 
p in this grid. The turbulence quantities k and E are evaluated at the pressure nodes. 
The dashed lines represent the control volume faces, and the pressure is calculated 
at the center of the control volume. For convenience, U,, V,, W,, and pP in Fig. 3 
are assigned the same index, i.e., they are denoted by Ussi, Vs,,[, Wtqi, and p5,,[, 
respectively. Recall that the velocity components U, V, and Ware in the preselected 
orthogonal curvilinear coordinate directions. In other words, they are, in general, 
neither perpendicular to the control surfaces nor in the direction of the coordinate 
lines. However, with a proper choice of the orthogonal curvilinear coordinates in 
the physical plane, these components will not become parallel to the control 
surfaces. 

The 1Zpoint finite-analytic formula (Eq. (40)) for the momentum equations is 
used to evaluate the velocity components (U,, V,, W,) at the nodes d, n, and e in 
Fig. 3. These contain the pressure-gradient terms inside the source functions. An 
equation for this unknown pressure field is obtained as follows. 

The actual velocity field (U, V, W) is decomposed into a pseudovelocity field 
(0, v, @) plus the pressure-gradient terms contained in the source functions, i.e., 

u,= i7,- Cd 
1 + c,(C, + C, + R,/Az), 

%:p,+h:P,+b:p,) 
J rf 

v, = FE - C, 

i 
%~:P,+h:p,+h:Pi) 

l+C,(C,+C,+R./Az), J I 
(41) 

I, 

we= me- CC 
1 + C,(C, + CD + R,/Az), 

fl-w(GP;+b:P,+h:P[) 
J 

so that the pseudovelocities contain no pressure terms. An equation for pressure 
can then be derived by requiring the velocity field to satisfy the discretized equation 
of continuity (30). However, with nonorthogonal coordinates, the resulting pressure 
equation contains many pressure nodes (see Muraoka [32], for example). It is 
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therefore desirable to simplify the algorithm by introducing the modified pseudo- 
velocities (0, P, PI), 

U,= &-4h-PA 
f’,= t-&hc-pp) 
We = tic. - d,(p,c - PP), 

(42) 

where 

4, = 
(Rvb:),, Cn 

J,Cl + Cn(C, + C, + Rv/d~L,l 

de = CR r&L Cc, 
JeCl + C,(C,, + C, + Rw/~~),1 

(0, f, I@) still contain part of the pressure-gradient terms when the coordinate 
system is nonorthogonal (i.e., bf # 0 for i #j, see Eq. 41). These terms can be 
evaluated from the pressure field known at the previous time step or iteration 
without losing any accuracy or generality. If we require the velocity field to satisfy 
the equation of continuity, a simpler pressure equation can be derived in terms of 
the modified pseudovelocities (0, v, I&‘). In general, the continuity equation 
contains 18 velocity components for each control volume. However, due to the 
staggered grid system employed here, only six of these, namely, U,, U,, V,, V,, , 
W,, and W,,, can be obtained directly from Eqs. (41). A simple linear interpolation 
is used here to evaluate the remaining twelve from the velocity field known at the 
previous time step or iteration. The resulting equation for pressure is then 

uf PP = ad PO + % PC1 + an PNC + u, PSC + ue PEC + a,. Pwc - 6 (43) 

where 

ad = (bf L, d,, ~,=(bjhA,> a,, = @:L 4, 

a, = (b:),y 4, 0, = (b:), 4, a,,. = (b:),,, 4,. 

up=ud+u,+u,+u,.+u,,+u, 

D1 =(b;V+b; W),-(b;V+b; W),+(b;U+b; W),-(b:U+b: W), 

+ (6; U + b; V), - (hi U + 6; V), 

b = (b; @- (hi ti), + (b; t), - (hi @,+ (b; Ff’), - (b: I@),. + D1 

The modified pseudovelocitities (0, 9, I@‘) contain the neighboring nodal values 
of velocity, source functions, and part of the pressure-gradient terms. All of them 
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can be evaluated from the information known at the previous time step or iteration. 
Therefore, apart from the interpolations noted above, Eq. (43) is an exact algebraic 
representation of the equation of continuity. Thus, the pressure field can be 
obtained directly from an estimated velocity field. 

Although the guessed pressure field can be updated directly by Eq. (43), in 
practice the new pressure field may produce a velocity field which does not satisfy 
the equation of continuity. An iterative procedure is therefore required to correct 
the velocity field for more rapid convergence. Here, a velocity-correction formula, 
similar to that used in the older SIMPLE algorithm, is derived in terms of the 
pressure-corrections, 

up P’P = ad PL + a, P; + a, P& + a, P& + a, P& + ah3 p;Yc - D* (44) 

with D* = (hi U*)d - (6: U*), + (bz If*), - (6: V*), + (b: W*), - (6: W*),,, + D,, 
where (U*, I’*, IV*) is the imperfect velocity field obtained from the imperfect 
pressure field p*, and p’ ( -p -p*) is the pressure correction. The improved 
velocity field based on this correction is then given by 

uci= G-d&h-p>) 

vn = YT - d,,(i&c -P;) 

W, = W,* - d,(p’,, -p’p). 

(45) 

Note that the pressure-correction equation (44) is similar to the pressure equation 
(43). Although, unlike the pressure equation, the pressure-correction equation is 
not exact, the approximations made influence only the rate of convergence but not 
the final converged solution. 

The system of algebraic equations formed by the assembly of Eqs. (43) and (44) 
is solved by Jacobi line iterations with the tridiagonal-matrix algorithm. The tinite- 
analytic coefficients up, ad, etc., are updated in each upstream to downstream 
global sweep, but remain the same during the internal iterations. 

(c) Summary of Solution Procedure 

For transient problems, where the initial and boundary conditions are properly 
specified, the overall numerical solution procedure is as follows: 

1. Construct the coordinate system for the given body shape and solution 
domain, and calculate the geometric coefficients hJ, g”, J, etc. from Eqs. (22) to 
G-3). 

2. Specify the initial conditions for the velocity and turbulence fields. Set 
p = 0 everywhere initially. 

3. Specify the velocity and turbulence profiles at the first station 5 = 1 (these 
may be time dependent). 

4. Calculate the finite-analytic coefficients for momentum, pressure, and 
pressure-correction equations at the downstream station from Eqs. (39) and (43), 
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respectively. Store only the finite-analytic coefficients ad, an, and a, for the pressure 
equation. 

5. Solve the momentum equations based on the updated pressure field to 
obtain the starred velocity field (U*, I’*, W*). 

6. Calculate the mass source D*, and solve the pressure-correction equation 
(44). 

7. Correct the velocity field using the velocity-correction formulae (45), but 
do not correct the pressure field. 

8. Update wall-function boundary conditions using the newly-obtained 
velocity field and repeat steps 5 to 7 for several internal iterations. 

9. Calculate the pseudovelocities (0, p, I@) in terms of the velocity field 
from Eq. (42). Store only fi for later use. 

10. Solve Eqs. (40) for turbulence quantities (4 = k, E). 

Il. March to the next downstream station and repeat steps 4 to 10. 
12. After reaching the last downstream station, solve the pressure equation 

(43). Several iterations from downstream to upstream are employed to update the 
three-dimensional elliptic pressure field. Depending upon the time step employed, 
some under-relexation of pressure is required for convergence. 

13. Repeat steps 4 to 12 for several sweeps until both the pressure and 
velocity fields have converged within a specified tolerance. 

14. Return to step 3 for the next time step. 

EXAMPLE APPLICATION 

Many basic components of the present numerical method have been subjected to 
critical tests and validations. Extensive comparisons with known analytical results, 
other numerical solutions, and well-established data sets have been made for 
laminar and turbulent flows on simple two-dimensional and axisymmetric flows 
[33-371 to gauge the overall accuracy of the method. However, the full capability 
of the method remains to be demonstrated for applications involving practical 
three-dimensional geometries. In the following, we present solutions for the flow 
over the stern and in the wake of a typical ship hull, namely the SSPA 720 Cargo 
Liner. Measurements of the boundary layer on a double model of this hull form 
were made by Larsson [38] in a wind tunnel. The data were supplemented 
by corresponding turbulence measurements by Lofdahl [39] and Lofdahl and 
Larsson [40]. 

(a) Coordinates 

As noted earlier, the present method can be used with either analytic or numeri- 
cal coordinate transformations. For the application to a ship hull considered here, 
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we use a numerically-generated body-fitted coordinates system, since it offers the 
advantages of generality and flexibility and, most importantly, allows a more direct 
control of grid distributions in regions requiring higher resolution. The grid- 
generation technique employed here is based on the solution of a system of Poisson 
equations of the form of 

vyi=j-i, (46) 

where 5’ = 4, r2 = q, t3 = [, and V2 is the Laplacian in orthogonal coordinates xi as 
defined in Eq. (3). The nonhomogeneous source functions fi may be assigned 
appropriate values to yield desired concentration of coordinate surfaces. In 
practical applications, the inverse transformation of Eq. (46) is used to obtain the 
coordinate transformation relations xi = x’(t, q, [, z), i.e., 

V2x’ = (47) 

where V2 is the Laplacian operator in the transformed plane (5, v], [, T) and is 
defined in Eq. (20). Equations (47) were solved by an exponential-linear scheme 
described in Chen and Pate1 [23]. Some views of the grid generated in this manner 
are shown in Fig. 4. 

As discussed in Chen and Pate1 [23], the cylindrical polar coordinates 
(x1, x2, x3) = (x, r, 0) are perhaps the most convenient for the description of the 
flow field around ship forms. With this choice, the governing equations and the 
associated geometric coefficients are greatly simplified, since the only nonzero K, 
and CQ are K,, = l/r, and a22 = a33 = - l/r2. The equations in cylindrical polar coor- 
dinates are given in Chen and Pate1 [23] and Patel, Chen, and Ju [41]. 

(b) Boundary Conditions 

For the calculation of ship stern and wake flows, it is assumed that the ship is 
symmetric about a vertical centerplane and the waterplane is regarded as a plane 
of symmetry, and the solution is sought in a domain downstream of some initial 
section around midship where the boundary layer is thin. Referring to the physical 
solution domain shown in Fig. 5, the appropriate boundary conditions are then as 
follows: 

(1) Inlet plane A (t = 1): U, V, W, k, E specified. 
(2) Exit plane B:P~= U,,= V,,= W,,=k,,=E55=0. 
(3) Body surface S (q = 1): two-point wall-functions. 
(4) Outer boundary C: U= 1, k,=E,=p=O. 
(5) Symmetry planes C, W: U, = V, = kc = Ed = 0; W= 0. 
(6) Initial conditions: U, V, W, k, E specified; p = 0. 



322 CHEN, PATEL, AND JU 

0. 

-_ 01 

-. 02 

z -. 03 

-. 04 

-. 05 

-, 06 

-. 07 

-. 08 

0. 

-. 01 

-. 02 

z -. 03 

-. 04 

-. 05 

-_ 06 

-_ 07 

-. 08 
0. .02 .04 .06 .08 

Y 

0. 

-_ 01 

-. 02 

z -. 03 

-. 04 

-. 05 

-. 06 

-. 07 

-. 08 
0. .oz .04 .06 .08 0. .02 .04 -06 .oe 

Y Y 

0. 

-. 01 

-. 02 

z -. 03 

-. 04 

-. 05 

-. 06 

-. 07 

Y 

0. 

-. 01 

-. 02 

z -. 03 

-. 04 

-. 05 

-. 06 

-_ 07 

-. oe 
0. .02 .04 .06 08 

Y 

FIG. 4. Typical views of the numerical grid (six transverse sections) 
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YX 

0 

FIG. 5. Solution domain for ship stern and wake flow. 

The exit boundary conditions are satisfied by linear extrapolation of known 
(previous iterations) values to the exit plane. The solutions are insensitive to the 
extrapolation if the exit plane is sufficiently far downstream. The wall-functions 
employed here are determined by requiring the first two points (q = 2 and 3) in the 
near-wall region to satisfy the generalized law of the wall given by Pate1 [42]. This 
two-point wall-function approach is described in detail in [36, 413. 

Calculations for SSPA 720 Cargo Liner were performed at a Reynolds number of 
5 x 106, based on model length. Several different numerical grids and solution 
domains were used to examine the sensitivity of the solutions to grid refinement and 
domain size. In addition, the convergence histories of the solutions were also 
examined to evaluate the overall performance of the method. We shall briefly 
describe the numerical as well as physical aspects of the method in the following 
sections. 

(c) Convergence 

Two important measures of the performance of an iterative numerical method 
such as the present one are the number of iterations required to obtain a converged 
solution and the influence of the grid. Here, we shall examine first the convergence 
history of several representative quantities for a typical calculation with a 
(50 x 30 x 15) grid in the (x, r, 0) directions. In this particular application, as well 
as in all others, the calculations were performed for 160 time steps (or sweeps) to 
assure full convergence of the solutions although much fewer sweeps are actually 
required to obtain an acceptable solution. 
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FIG. 6. Convergence history. 

Figure 6 shows the convergence of the distributions of pressure, C, ( = 2p), and 
friction velocity U,, along the waterline coordinate and its extension into the wake. 
It is seen that these quantities converge monotonically in less than 60 time steps 
or global sweeps. Recall that the solutions were started with a constant ambient 
pressure (p = 0) throughout the solution domain. The calculated pressure and 
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velocity fields clearly capture all the important features of the final converged solu- 
tions in less than 20 sweeps. This is particularly encouraging because it eliminates 
the need for generating an initial pressure field from a potential-flow calculation. 

Other tests of convergence of the solutions made on the velocity components, 
turbulence parameters, and the mass-source terms appearing in the pressure and 
pressure-correction equations also showed monotonic convergence similar to that 
depicted for the flow parameters shown in the above figures. 

(d) Grid Dependence 

Calculations were performed with four different (x, r, 0) grids in the solution 
domain: (0.3 cxc4.5, r,<r< 1.0, O< 8<7c/2} to examine the sensitivity of the 
numerical solutions to grid refinement. Some information on these calculations is 
given in Table I. In the stern and near wake regions, the finest grid, (74 x 30 x 21), 
has nearly twice as many nodes in each direction compared with the coarsest one, 
(41 x 15 x 12). The coarsest grid calculation converged in only 15 iterations and 
required only about 40 cpu seconds on the CRAY XMP/48. On the other hand, the 
finest grid required about 30 cpu minutes to achieve the same level of convergence. 
This is due to the significant increase of the number of grid nodes as well as the 
number of global sweeps (110) needed for convergence. We note that the computing 
times also vary due to the differing levels of vectorization effected by the CRAY. 
For the same level of vectorization, it is found that the computing time is 
approximately proportional to the square of the number of total nodes. 

Figure 7 shows the results obtained with the four grid arrangements with regard 
to the flow parameters considered before. It is quite evident that the three finer 
grids yield nearly identical results. On the other hand, the solution with the coarsest 
grid shows some departure from the other three. This is presumably due to an 

Case + 

TABLE I 

Summary of Grid Dependence Tests 

I II III IV 

Grid points 
in x-direction 
in r-direction 
in.&direction 

Total nodes 

Time step, dr 

Memory, lo6 

cpu, s/iteration 

Iterations for 
convergence 

Total cpu (s) 

41 74 

15 15 

12 12 

7,380 13,320 

1.0 0.5 

0.32 0.51 

2.6 5.3 

15 60 55 110 

40 320 330 1830 

50 14 

30 30 

15 21 

22,500 46,620 

0.3 0.5 

0.84 1.63 

6.0 16.6 
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FIG. 7. Grid-dependence 

inadequate numerical resolution and less accurate specifications of boundary condi- 
tions at the hull surface and along the wake centerline. Nevertheless, it is quite 
encouraging to note that even the coarsest grid calculation is able to capture many 
of the important features of the flow which are evident from the data discussed 
later. 
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(e) Solution Domain 

In some earlier studies of well known two-dimensional, axisymmetric, and simple 
three-dimensional bodies, it was found that, with the simple uniform-stream bound- 
ary conditions employed here the numerical solutions were quite sensitive to the 
size of the solution domain. The most critical quantity to be examined in this 
regard is the pressure distribution since its influence penetrates much farther into 
the inviscid-flow region compared to the velocity field. In order to properly capture 
the entire zone of viscous-inviscid interaction, the outer boundary should be placed 
at a distance sufficiently far away from the body such that the uniform flow and 
zero pressure conditions are indeed appropriate. Similarly, the downstream bound- 
ary must be located in the far wake where upstream propagation of pressure 
becomes negligible, 

For the present applications to ship stern and wake flows, we have varied the 
location of the outer and downstream boundaries over a wide range to examine the 
influence of domain size on the solutions. Calculations were performed for four 
different combinations of downstream and outer boundaries, namely, 

0.3 <x < 23.1, rS --c r < 2.00 with a (57 x 35 x 15) grid, 

0.3 < x < 4.53, r,v < r < 0.95 with a (50 x 31 x 15) grid, 

0.3 < x < 1.95, r,$ < r < 0.47 with a (45 x 27 x 15) grid, 

0.3 < x < 1.34, rs < r < 0.22 witha(41 x22x 15)grid. 

The grids for the three smaller domains were obtained by simply deleting an 
appropriate number of outer and downstream grid lines from the grid generated for 
the largest solution domain. Therefore, the four solutions correspond to essentially 
the same grid distributions. It is seen from Fig. 8 that the solutions with the two 
larger domains are essentially the same. It is also clear that the smallest domain is 
too small to correctly predict the pressure distribution over the hull. These calcula- 
tions suggest that domain dependency can be eliminated by choosing an outer 
boundary which is farther than about a half ship length from the axis, and the 
downstream boundary at a similar distance from the stern. 

(f) Results and Comparisons with Experiments 

A detailed description of the numerical results obtained by the present method 
for a variety of hull forms, including the present case, is given in Patel, Chen, and 
Ju [4]. Here, we shall examine only a few selected results to demonstrate the 
capability and overall performance of the method. In this regard, we note that the 
most critical quantities in gauging the success of a method for external flow applica- 
tions are the pressure and shear-stress distributions on the body surface. Figure 9 
shows the distribution of pressure and friction velocity U, along the keel and 
waterline planes of symmetry. It is seen that the calculated wall pressures are in 
quite good agreement with the data corrected for wind-tunnel blockage. The fric- 
tion velocities along the keel are also in excellent agreement with the available data. 
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FIG. 8. Influence of solution domain size. 

The same level of agreement has also been achieved for the girthwise distributions 
of pressure and friction velocity [41]. 

The development and evolution of the three-dimensional flow pattern associated 
with the predicted friction distribution can also be seen from the limiting 
streamlines on the hull surfaces. Figure 10 shows the divergence of wall streamlines 
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out of the keel over much of the keel which results in a thinning of the boundary 
layer along the keel. There is also a secondary motion, although somewhat weaker, 
towards the midgirth low pressure region from the waterplane. This convergence of 
flow from both sides eventually leads to a thickening of the viscous layer around 
midgirth in the stern region. 

The flow patterns on the waterplane and in the vertical centerplane are shown in 
Fig. 11. The thickening of the boundary layer over the stern in the waterplane and 
the thinning of the boundary layer along the keel are clearly seen from these views 
as is the evolution of the three-dimensional wake. Contours of the axial velocity (U) 
and velocity vectors projected into transverse sections (V and W components) are 

.? 
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05 
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FIG. 11. Velocity vectors in the waterplane (top) and in the vertical centerplane (bottom) 
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shown in Fig. 12 for two representative sections in the stern region (x=0.95 and 
1.0). The secondary motion induced by the rapid changes in hull geometry is quite 
strong and converges from both the keel and waterplane towards the midgirth. This 
convergence is responsible for the rapid thickening of the midgirth boundary layer. 
At the downstream section, the secondary motion gives the impression of a 
longitudinal vortex, but the strength of this motion diminishes quite rapidly. 

More detailed comparisons between experiments and calculations are presented 
in Fig. 13. The calculated results were interpolated to determine the variation, with 
distance N normal to the transverse section of the hull, of the resultant velocity 
parallel to the hull (Q), the crossflow velocity (C), and the turbulent kinetic energy 
(k) at x = 0.95, where strong three-dimensionality of the flow field is observed. We 
note first that the variation of the thickness of the viscous layer in the girthwise 
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direction is predicted with considerable accuracy. Second, the profiles of Q and C 
are described quite well by the calculation although there is a tendency for the 
calculated velocities to be somewhat higher in the near-wall region. Third, the 
predicted turbulent kinetic energy is considerably larger than that measured. 
Finally, we note a very characteristic two-layer feature developing around midgirth 
which suggests the existence of a thin layer of fluid close to the wall in which k 
diminishes rapidly, and a much larger layer farther out where there is a plateau in 
k and a gradual decrease to zero outside the viscous region. Although there is a hint 
of such a two-layer structure in the calculated profiles, it is obvious that the present 
turbulence model does not capture the changes that are taking place in the 
turbulence in the flow over the stern. 

SUMMARY AND CONCLUSIONS 

A fully-elliptic numerical method for the solution of the complete Reynolds- 
averaged Navier-Stokes equations for general three-dimensional, incompressible 
flows has been presented. The method uses nonorthogonal body-fitted coordinates 
while retaining the velocity components in an orthogonal curvilinear coordinate 
system. For turbulent flows, closure of the equations is effected by the well known 
k-s model with the generally accepted values of the constants in the model and 
a two-point wall-function approach. The various numerical features of the method 
have been described and evaluated. 

Calculations have been performed for the flow over the stern and in the wake of 
a practical ship hull for which experimental data are available. Comparisons have 
been made to understand the important features of such flows and to demonstrate 
the full capability of the calculation method. It is quite clear from these calcula- 
tions, as well as many others presented and discussed in Refs. [33-37, 411, that 
the present method has many attractive features. Among them are rapid and 
monotonic convergence to steady-state solutions starting from rather simple initial 
guesses, ability to perform accurate calculations over a large solution domain with 
a relatively modest grid, and the potential to calculate unsteady flows. It is 
anticipated that, with suitable modifications, the method can be utilized for the 
solution of other problems encountered in aero- and hydrodynamics. 
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